Login / Signup

Sensory improvement and antioxidant enhancement in silver carp hydrolysate using prebiotic oligosaccharides: insights from the Maillard reaction.

Peipei DouKai WangNing DingYanyan ZhengHui HongHuaigao LiuYuqing TanYongkang Luo
Published in: Food & function (2024)
Our previous studies have highlighted the potential of silver carp hydrolysate (SCH) in managing chronic diseases. Unfortunately, its fishy smell and bitter taste limited consumer acceptance. Prebiotic oligosaccharides are often used as dietary supplements, ignoring their role as carbonyl ligands in the Maillard reaction to enhance food's sensory and antioxidant properties. This study aimed to improve SCH's sensory attributes and investigate its physicochemical properties and antioxidant activities using prebiotic oligosaccharides via the Maillard reaction. The results showed that xylo-oligosaccharide (XOS) had the highest reactivity among the oligosaccharides tested, and it greatly enhanced the taste and flavor of SCH, as well as its antioxidant activities (0.45 to 16.5 times). Specifically, XOS effectively reduced the fishy smell and bitter taste, imparting a caramel-like flavor and overall acceptability to SCH. The improved flavor profile was attributed to the increased presence of sulfur-containing and nitrogen oxide volatile flavor compounds, such as benzothiazole, methional, and furans, which also contributed to antioxidant effects. Sensory evaluation results indicated that SCH obtained from papain exhibited a stronger bitter taste than that obtained from alcalase. Additionally, XOS imparted a reddish-brown color to SCH due to the higher browning intensity. This study is the first to demonstrate that XOS in the Maillard reaction can effectively improve the undesirable flavor and taste of SCH while enhancing its antioxidant activities, providing a theoretical basis for developing SCH as a market-acceptable functional food ingredient.
Keyphrases
  • oxidative stress
  • anti inflammatory
  • human health
  • type diabetes
  • risk assessment
  • metabolic syndrome
  • high intensity
  • health information
  • case control
  • climate change
  • gas chromatography