Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico.
Candice MazewskiMorgan Sanha KimElvira Gonzalez de MejiaPublished in: Scientific reports (2019)
The objective was to assess anti-progression and stimulatory immune response effects among anthocyanins (ANC) and their metabolites on human colorectal cancer cells in vitro and in silico. Pure phenolics including delphinidin-3-O-glucoside (D3G) and its metabolites, delphinidin (DC) and gallic acid (GA), were tested alone or in combination, on HCT-116 and HT-29 human colorectal cancer cells (100-600 µg/mL). HCT-116 and HT-29 50% inhibition concentrations (µg/mL) were 396 ± 23 and 329 ± 17 for D3G; 242 ± 16 and >600 for DC; and 154 ± 5 and 81 ± 5 for GA, respectively. Using molecular docking, cyanidin-3-O-glucoside (C3G) showed the highest potential to inhibit immune checkpoints: programmed cell death protein-1 (PD-1) (-6.8 kcal/mol) and programmed death-ligand-1 (PD-L1) (-9.6 kcal/mol). C3G, D3G, DC, GA, and D3G-rich extracts decreased PD-L1 protein expression in HCT-116 cells. C3G decreased PD-L1 fluorescence intensity by 39%. ANC decreased PD-1 expression in peripheral blood mononuclear cells in monoculture by 41% and 55%, and co-culture with HCT-116 and HT-29 cells by 39% and 26% (C3G) and 50% and 51% (D3G), respectively. D3G and C3G, abundant in plant foods, showed potential for binding with and inhibiting immune checkpoints, PD-1 and PD-L1, which can activate immune response in the tumor microenvironment and induce cancer cell death.
Keyphrases
- cell cycle arrest
- cell death
- molecular docking
- immune response
- endothelial cells
- pet ct
- dendritic cells
- induced apoptosis
- pi k akt
- induced pluripotent stem cells
- ms ms
- pluripotent stem cells
- molecular dynamics simulations
- poor prognosis
- inflammatory response
- oxidative stress
- climate change
- cell proliferation
- transcription factor
- single molecule
- quantum dots