Login / Signup

Identification of Novel Regulatory Regions Induced by Intrauterine Growth Restriction in Rat Islets.

Yu-Chin LienSara E PinneyXueqing Maggie LuRebecca A Simmons
Published in: Endocrinology (2021)
Intrauterine growth restriction (IUGR) leads to development of type 2 diabetes in adulthood and the permanent alterations in gene expression implicate an epigenetic mechanism. Using a rat model of IUGR, we performed TrueSeq-HELP Tagging to assess the association of DNA methylation changes and gene dysregulation in islets. We identified 511 differentially methylated regions (DMRs) and 4377 significantly altered single CpG sites. Integrating the methylome and our published transcriptome datasets resulted in the identification of pathways critical for islet function. The identified DMRs were enriched with transcription factor binding motifs, such as Elk1, Etv1, Foxa1, Foxa2, Pax7, Stat3, Hnf1, and AR. In silico analysis of 3D chromosomal interactions using human pancreas and islet Hi-C datasets identified interactions between 14 highly conserved DMRs and 35 genes with significant expression changes at an early age, many of which persisted in adult islets. In adult islets, there were far more interactions between DMRs and genes with significant expression changes identified with Hi-C and most of them were critical to islet metabolism and insulin secretion. The methylome was integrated with our published genome-wide histone modification datasets from IUGR islets resulting in further characterization of important regulatory regions of the genome altered by IUGR containing both significant changes in DNA methylation and specific histone marks. In summary we identified novel regulatory regions in islets after exposure to IUGR suggesting that epigenetic changes at key transcription factor binding motifs and other gene regulatory regions may contribute to gene dysregulation and an abnormal islet phenotype in IUGR rats.
Keyphrases