Cinnamyl Alcohol Attenuates Adipogenesis in 3T3-L1 Cells by Arresting the Cell Cycle.
Yae Rim ChoiYoung-Suk KimMin Jung KimPublished in: International journal of molecular sciences (2024)
Cinnamyl alcohol (CA) is an aromatic compound found in several plant-based resources and has been shown to exert anti-inflammatory and anti-microbial activities. However, the anti-adipogenic mechanism of CA has not been sufficiently studied. The present study aimed to investigate the effect and mechanism of CA on the regulation of adipogenesis. As evidenced by Oil Red O staining, Western blotting, and real-time PCR (RT-PCR) analyses, CA treatment (6.25-25 μM) for 8 d significantly inhibited lipid accumulation in a concentration-dependent manner and downregulated adipogenesis-related markers (peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), adiponectin, fatty acid synthase (FAS)) in 3-isobutyl-1-methylxanthine, dexamethasone, and insulin(MDI)-treated 3T3-L1 adipocytes. In particular, among the various differentiation stages, the early stage of adipogenesis was critical for the inhibitory effect of CA. Cell cycle analysis using flow cytometry and Western blotting showed that CA effectively inhibited MDI-induced initiation of mitotic clonal expansion (MCE) by arresting the cell cycle in the G 0 /G 1 phase and downregulating the expression of C/EBPβ, C/EBPδ, and cell cycle markers (cyclin D1, cyclin-dependent kinase 6 (CDK6), cyclin E1, CDK2, and cyclin B1). Moreover, AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC), and extracellular signal-regulated kinase 1/2 (ERK1/2), markers of upstream signaling pathways, were phosphorylated during MCE by CA. In conclusion, CA can act as an anti-adipogenic agent by inhibiting the AMPKα and ERK1/2 signaling pathways and the cell cycle and may also act as a potential therapeutic agent for obesity.
Keyphrases
- cell cycle
- protein kinase
- cell proliferation
- binding protein
- fatty acid
- signaling pathway
- early stage
- high fat diet induced
- flow cytometry
- insulin resistance
- pi k akt
- induced apoptosis
- type diabetes
- metabolic syndrome
- south africa
- adipose tissue
- anti inflammatory
- poor prognosis
- high dose
- transcription factor
- cell death
- oxidative stress
- low dose
- tyrosine kinase
- lymph node
- cell cycle arrest
- rectal cancer
- weight loss