Regulatory effect of β-glucan secreted by Rhizobium pusense on triglyceride metabolism and their relationships with the modulation of intestinal microbiota in mice fed a high-fat diet.
Bin ZhangWei ZhaoDong SongXiaomei LyuPublished in: Food & function (2024)
The present study investigated the regulatory effects of β-glucan secreted by Rhizobium pusense (RPG) on triglyceride metabolism and gut microbiota in mice fed a high-fat diet. The results indicated that supplementation with RPG significantly reduced body weight gain, blood glucose levels, and the tissue index of epididymal white adipose tissue (eWAT) and subcutaneous adipose tissue (SAT). Conversely, it increased the tissue index of brown adipose tissue (BAT). Furthermore, RPG supplementation effectively decreased the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum. Regarding its influence on the triglyceride (TG) mechanism, RPG decreased TG levels in both serum and liver, while elevating TG levels in feces. Moreover, it moderated the composition of gut microbiota in mice fed a high-fat diet, particularly altering functionally relevant intestinal microbial phylotypes, leading to enhanced levels of short-chain fatty acids (SCFAs) in feces. Additionally, RPG treatment regulated the mRNA and protein levels of genes responsible for TG metabolism in the AMPK pathway, indicating an impact on TG synthesis and excretion in the liver. Pearson's correlation network analysis demonstrated strong correlations between key microbial phylotypes responsive to RPG intervention and parameters associated with TG metabolic disorders. SCFA levels were also found to correlate with the mRNA expression levels of genes involved in TG metabolism. Finally, lipidomics analyses were performed to investigate the underlying mechanisms of RPG intervention (glycerophospholipid metabolic pathway) and to identify potential lipid biomarkers, such as TG (18:2/20:4/22:6), TG (18:1/20:4/22:6), TG (20:1/18:1/22:4), PC (17:0/20:4), TG (18:1/20:4/22:5), PC (22:4/22:6), PC (20:0/22:6), PC (20:0e/20:4), DG (18:3e/18:2), DG (10:0/18:2), DG (18:2/14:2), TG (10:0/18:2/20:4), TG (16:1/14:3/18:2) and TG (16:0/14:2/22:6). Overall, our results suggest that RPG could activate the hepatic AMPK signaling pathway by regulating gut microbiota and metabolites through gut-liver crosstalk to exert a lipid-lowering effect in mice fed a high-fat diet and improve obesity.
Keyphrases
- high fat diet
- adipose tissue
- insulin resistance
- high fat diet induced
- weight gain
- signaling pathway
- randomized controlled trial
- skeletal muscle
- blood glucose
- fatty acid
- type diabetes
- transcription factor
- microbial community
- high resolution
- physical activity
- ms ms
- cancer therapy
- risk assessment
- birth weight
- preterm birth
- gestational age
- cell proliferation
- wild type