Ceratonia siliqua L. Pod Extract: From Phytochemical Characterization to Liposomal Formulation and Evaluation of Behaviour in Cells.
Maria De LucaCarlo Ignazio Giovanni TuberosoRamon PonsMaría Teresa GarcíaMaría Del Carmen MoránGiuseppe MartelliAntonio VassalloCarla CaddeoPublished in: Antioxidants (Basel, Switzerland) (2023)
The formulation of plant extracts in phospholipid vesicles is a promising strategy to exploit their biological properties while solving problems related to poor solubility in water, high instability, and low skin permeation and retention time. In this study, Ceratonia siliqua ripe pods were used for the preparation of a hydro-ethanolic extract, which showed antioxidant properties owing to the presence of biologically active compounds identified by liquid chromatography-mass spectrometry (e.g., hydroxybenzoic acid and flavonoid derivatives). To improve the applicability of the extract in therapy, a topical formulation based on liposomes was explored. The vesicles were characterized by small size (around 100 nm), negative charge (-13 mV), and high entrapment efficiency (>90%). Furthermore, they displayed both spherical and elongated shapes, with oligolamellar structure. Their biocompatibility was demonstrated in cells, including erythrocytes and representative skin cell lines. The antioxidant activity of the extract was proved by the scavenging of free radicals, the reduction of ferric ions, and the protection of skin cells from oxidative damage.
Keyphrases
- oxidative stress
- induced apoptosis
- mass spectrometry
- drug delivery
- liquid chromatography
- anti inflammatory
- wound healing
- cell cycle arrest
- soft tissue
- endoplasmic reticulum stress
- high resolution
- quantum dots
- cell death
- high resolution mass spectrometry
- cross sectional
- stem cells
- gas chromatography
- fatty acid
- cell proliferation
- high performance liquid chromatography
- ms ms