Login / Signup

Binary Pea Protein-Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics.

Adonis HilalAnna FlorowskaEwa DomianMałgorzata Wroniak
Published in: Gels (Basel, Switzerland) (2024)
Food hydrogels, used as delivery systems for bioactive compounds, can be formulated with various food-grade biopolymers. Their industrial utility is largely determined by their physicochemical properties. However, comprehensive data on the properties of pea protein-psyllium binary hydrogels under different pH and ionic strength conditions are limited. The aim of this research was to evaluate the impact of pH (adjusted to 7, 4.5, and 3) and ionic strength (modified by NaCl addition to 0.15 and 0.3 M) on the physical stability, color, texture, microrheological, and viscoelastic properties of these hydrogels. Color differences were most noticeable at lower pH levels. Inducing hydrogels at pH 7 (with or without NaCl) and pH 4.5 and 3 (without NaCl) resulted in complete gel structures with low stability, low elastic and storage moduli, and low complex viscosity, making them easily spreadable. Lower pH inductions (4.5 and 3) in the absence of NaCl resulted in hydrogels with shorter linear viscoelastic regions. Hydrogels induced at pH 4.5 and 3 with NaCl had high structural stability, high G' and G" moduli, complex viscosity, and high spreadability. Among the tested induction conditions, pH 3 with 0.3 M NaCl allowed for obtaining a hydrogel with the highest elastic and storage moduli values. Adjusting pH and ionic strength during hydrogel induction allows for modifying and tailoring their properties for specific industrial applications.
Keyphrases