Effects of peroxidase and superoxide dismutase on physicochemical stability of fish oil-in-water emulsion.
Fangzhou HeYing TanYang XuGuanzhen GaoHuiqin WangSihao LuoJianwu ZhouQiang WangPublished in: NPJ science of food (2022)
How to maintain the physicochemical stability of oil emulsion has been one of the major challenges in food industry. Previously we reported the demulsification effects of catalase in the fish oil emulsion. In comparison, the influences of other two metal ion-containing oxidoreductases, horseradish peroxidase (HRP) and copper/zinc superoxide dismutase (SOD), on the emulsion's stability were investigated. Submicron fish oil-in-water emulsion stabilized by polysorbate 80 was prepared by high-speed homogenization. Its physical stability was evaluated by visual and microscopic observation, turbidity and light scattering measurements, while chemical stability by the hydroperoxide content and lipid peroxidation. HRP demulsified the emulsion in a concentration-responsive manner after 3-7 days' incubation, resulting in a decreased turbidity and significant delamination. The enlargement of oil-polysorbate droplets and protein precipitates were confirmed by size distribution and TEM observation. HRP initially elevated the emulsion's hydroperoxide then decreased it while raising TBARS levels during 7-Day incubation. In contrary, SOD stabilized the emulsion physically and chemically. The demulsification was correspondingly attributed to the oxidation catalyzing activity of the peroxidase and the electrostatic and hydrophobic interaction between lipids and proteins. This study adds new insight to the influences of the two oxidoreductases on the stability, lipids and peroxides of food emulsions, proposes an exciting subject of elucidating the underlying mechanism.