Cardiomyocyte lipotoxicity and ferroptosis are the key to the development of diabetic cardiomyopathy (DCM). Perilipin 5 (PLIN5) is perceived as a significant target of DCM. This study aimed to focus on the role and mechanism of PLIN5 on lipotoxicity and ferroptosis in DCM.Following transfection, mouse cardiomyocytes HL-1 were induced by 0.1 mM palmitic acid (PA) to set up lipotoxic cardiomyocyte models. The cell viability and lipid accumulation were evaluated by cell counting kit-8 assay and Oil red O staining, respectively. Ferrous ion (Fe 2+ ), glutathione (GSH), malondialdehyde (MDA), and reactive oxygen species (ROS) levels were determined to verify the effects of PLIN5 or Pirin (PIR) on ferroptosis. Quantitative real-time reverse transcription polymerase chain reaction or Western blot was performed for quantitative analysis.PLIN5 overexpression promoted the viability, GSH level, and expression of GPX4/PIR/intracellular P65, yet suppressed lipid accumulation, level of Fe 2+ /MDA/ROS, and expression of interleukin (IL)-1β/IL-18/intranuclear P65 in PA-stimulated HL-1 cells. PIR silencing counteracted the roles of PLIN5 overexpression in PA-stimulated HL-1 cells.PLIN5 suppresses lipotoxicity and ferroptosis in cardiomyocyte via modulating PIR/NF-κB axis, hinting its potential as a therapeutic target in DCM.
Keyphrases
- cell death
- cell cycle arrest
- signaling pathway
- reactive oxygen species
- induced apoptosis
- pi k akt
- angiotensin ii
- poor prognosis
- cell proliferation
- high glucose
- transcription factor
- lps induced
- oxidative stress
- depressive symptoms
- type diabetes
- dna damage
- social support
- breast cancer cells
- binding protein
- high throughput
- single cell
- mental health
- fatty acid
- inflammatory response
- endoplasmic reticulum stress
- long non coding rna
- endothelial cells
- flow cytometry