Conversion of Retinyl Palmitate to Retinol by Wheat Bran Endogenous Lipase Reduces Vitamin A Stability.
Eline Van WayenberghJonas BlockxNiels A LangenaekenImogen FoubertChristophe M CourtinPublished in: Foods (Basel, Switzerland) (2023)
Wheat bran can be used as a cost-effective food ingredient to stabilise vitamin A. However, wheat bran endogenous enzymes have been shown to reduce vitamin A stability. In this study, we elucidated the mechanism for this negative effect in an accelerated storage experiment with model systems consisting of native or toasted wheat bran, soy oil and retinyl palmitate (RP). Both native and toasted wheat bran substantially stabilised RP. While RP was entirely degraded after ten days of storage in the absence of wheat bran, the RP retention after ten days was 22 ± 2% and 75 ± 5% in the presence of native and toasted bran, respectively. The significantly stronger stabilising effect of toasted bran was attributed to the absence of bran endogenous enzymes. In contrast to toasted bran systems, noticeable free fatty acid production was observed for native bran systems. However, this did not result in a pronounced lipid oxidation. Next to lipid hydrolysis, wheat bran lipase was shown to hydrolyse retinyl esters to the less stable retinol and fatty acids. This reaction could explain the major part, about 66 ± 5%, of the difference in RP stabilisation between native and toasted wheat bran.