Login / Signup

Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfate-induced colitis in mice.

Jialu ShiQinggang XieYingxue YueQingxue ChenLina ZhaoSmith Etareric EvivieBailiang LiGuicheng Huo
Published in: Food & function (2021)
Correlations between gut microbiota activities and inflammatory bowel disease (IBD) treatment are gaining research interest. In our previous study, Lactobacillus acidophilus KLDS 1.0901, Lactobacillus helveticus KLDS 1.8701, and Lactobacillus plantarum KLDS 1.0318 showed antibacterial, antioxidant, and immunomodulatory activities. In the current study, we evaluated the effects of three tested strains and their mixture on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. The three tested strains and their mixture significantly decreased the disease activity index (DAI), colon shortening, and myeloperoxidase (MPO) activity. Additionally, the three tested strains and their mixture improved the histological damage, increased the colonic mucous layer integrity, and exhibited lower levels of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), while up-regulating colonic anti-inflammatory cytokine IL-10 levels, tight junction proteins (E-cadherin, zonulae occludens (ZO)-1, occludin and claudin-1) and mucin (MUC1 and MUC2) mRNA expressions to some extent. In addition, mixed lactobacilli showed better anti-inflammatory effects than single-strain treatment. Our study further revealed that mixed lactobacilli increased bacterial diversity and improved gut microbiota composition, increasing short-chain fatty acid (SCFA) production. These results indicated that mixed lactobacilli supplementation could attenuate DSS-induced colitis by modulating the gut microbiota and repairing the intestinal barrier, which provided a scientific basis for its clinical application in the future.
Keyphrases