Chia Seed (Salvia hispanica L.) Pepsin Hydrolysates Inhibit Angiotensin-Converting Enzyme by Interacting with its Catalytic Site.
Brenda San Pablo-OsorioLuis MojicaJudith Esmeralda Urias-SilvasPublished in: Journal of food science (2019)
High blood pressure can lead to cardiovascular diseases. The objective of this work was to obtain protein hydrolysates with antihypertensive potential from chia oil industry meal byproduct. Chia seed protein isolates (CPIs) were obtained from chia seed meal byproduct. CPI was hydrolyzed using different proteases (alcalase, pepsin, trypsin, and α-chymotrypsin) and their biological potential was evaluated using in vitro and in silico approaches. Chia seed pepsin protein hydrolysate showed the highest angiotensin-converting enzyme inhibition potential IC50 of 0.128 mg/mL (P < 0.05) compared to the rest of hydrolysates. Peptide sequence LIVSPLAGRL presented the lowest predicted binding energy and highest inhibition potential (-9.5 kcal/mol) compared to other sequenced peptides and positive controls (captopril and lisinopril). Chia peptides showed potential to block angiotensin-converting enzyme by interacting with its catalytic site. Chia seed oil industry meal byproduct could be used as an inexpensive source of protein and bioactive peptides with antihypertensive potential. PRACTICAL APPLICATION: This research shows an upcycling alternative for chia oil industry byproduct. Chia meal is a rich source of protein and can be used to generate bioactive peptides with antihypertensive potential. Chia protein isolate was obtained from chia meal and hydrolyzed using different enzymes, pepsin showed the highest antihypertensive potential. Chia meal waste could be a low-cost source of protein and protein hydrolysates that could be used as a food ingredient with antihypertensive potential.