Login / Signup

The HAPSTR2 retrogene buffers stress signaling and resilience in mammals.

David R AmiciHarun CingozMilad J AlasadySammy AlhayekClaire M PhoumyvongNidhi SahniS Stephen YiMarc L Mendillo
Published in: Nature communications (2023)
We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.
Keyphrases
  • dna damage
  • binding protein
  • climate change
  • dna repair
  • poor prognosis
  • protein protein
  • social support
  • gene expression
  • physical activity
  • amino acid
  • body composition
  • copy number
  • depressive symptoms
  • young adults