Login / Signup

Investigation of Metabolite Differences in Salted Shrimp Varieties during Fermentation.

Ju-Young LimYun-Jeong ChoiHyejin YuJi-Young ChoiJi-Hee YangYoung Bae ChungSung Hee ParkSung Gi MinMi-Ai Lee
Published in: ACS omega (2023)
Fermentation of salted shrimp involves the interaction of multiple factors. However, studies of the effects of shrimp variety and fermentation temperature on metabolites generated during fermentation are limited. Therefore, we investigated the effects of the shrimp variety, fermentation temperature, and fermentation period on the composition of fermented salted shrimp. Four different varieties of salted shrimp, namely, Detteugijeot (SSA), Red shrimp jeot (SSB), Chujeot (SSC), and Yukjeot (SSD), were prepared and stored at 5 and 10 °C for 5 months. The pH values ranged from 6.71 to 6.99, with SSD showing the lowest pH at both temperatures. Although total nitrogen content remained relatively constant, amino nitrogen exhibited an upward trend after 2 months and was particularly increased at 10 °C. This increase was attributed to variations in microorganisms and enzymes in the salted shrimp. Except for proline, citrulline, and ornithine, amino acid levels increased during fermentation with the highest amounts detected in SSA. Additionally, the levels of glutamic acid and branched-chain amino acids were found to be sensitive to fermentation temperature. Amino acid levels were apparently affected by species-specific metabolic pathways of the microorganisms present in each salted shrimp. Compared to the other varieties, SSB had significantly higher contents of adenosine triphosphate and hypoxanthine. A high hypoxanthine content could contribute to increased bitterness and an umami taste profile. Furthermore, the correlation between salted shrimp and metabolites was unique in SSB, whereas partial clustering was observed between the SSA and SSC.
Keyphrases
  • lactic acid
  • saccharomyces cerevisiae
  • amino acid
  • room temperature
  • atomic force microscopy
  • single molecule