Login / Signup

Removal of the fishy malodor from Bangia fusco-purpurea via fermentation of Saccharomyces cerevisiae, Acetobacter pasteurianus, and Lactobacillus plantarum.

Xiping DuYuxue XuZedong JiangYanbing ZhuZhipeng LiHui NiFeng Chen
Published in: Journal of food biochemistry (2021)
The present study aims to evaluate the deodorization of Bangia fusco-purpurea using microorganism fermentation with commercial starter cultures of Saccharomyces cerevisiae, Acetobacter pasteurianus, and Lactobacillus plantarum. The results showed the fermentation with S. cerevisiae, A. pasteurianus, and L. plantarum resulted in significantly decreases (p < .05) of the fishy malodor in B. fusco-purpurea. Among the three strains, S. cerevisiae was the best for reducing the fishy malodor. The optimal inoculum size and fermentation time were 0.2% and 4 hr, respectively. After the fermentation with the S. cerevisiae, the content of 1-octen-3-ol, (E)-2-octen-1-ol, hexanal, non-(2E)-enal, (E,E)-2,4-decadienal, 3,5-octadien-2-one, and 2-pentyl-furan were hard to be detected in the seaweed, whereas increases were observed in the concentrations of 2-butyl-1-octanol, cedrol, diisobutyl phthalate, and 2,4-di-t-butylphenol. The odor active value analysis indicated the removal of fishy odor was related to the reduction, dehydrogenation, and deformylating oxygenation of hexanal, nonanal, non-(2E)-enal, and (E,E)-2,4-decadienal and esterification of 1-octen-3-ol and (E)-2-octen-1-ol. Our findings provide a technical and scientific basis for the removal of fishy odor from B. fusco-purpurea. PRACTICAL APPLICATIONS: Bangia fusco-purpurea is a seaweed that can reduce the risks of cardiovascular and chronic metabolic diseases in human body. However, the seaweed has a strong fishy malodor, which largely declines consumer's acceptance. In this study, the commercial starters of Saccharomyces cerevisiae, Acetobacter pasteurianus, and Lactobacillus plantarum were shown to reduce the fishy malodor in B. fusco-purpurea via fermentation. After the fermentation with the microorganisms especially with the S. cerevisiae, the fishy malodor significantly reduced, and the overall aroma acceptance of B. fusco-purpurea products greatly improved. Therefore, this study provides a technical basis for the removal of fishy odor from B. fusco-purpurea and processing value-added products from it and facilitating its health benefits for human.
Keyphrases
  • saccharomyces cerevisiae
  • endothelial cells
  • escherichia coli
  • mental health
  • public health
  • lactic acid
  • pseudomonas aeruginosa
  • staphylococcus aureus
  • pluripotent stem cells
  • social media