Nisin Production by Enterococcus hirae DF105Mi Isolated from Brazilian Goat Milk.
Danielle Nader FurtadoLorenzo FavaroLuis Augusto NeroBernadette Dora Gombossy de Melo FrancoJorge Enrique Vazquez BucheliPublished in: Probiotics and antimicrobial proteins (2020)
The purpose of this study was to select the promising biopreservation bacteriocin producer strain from goat milk and characterize the expressed bacteriocin, related to its physiological and biochemical properties and specificity of operon encoding production and expression of antimicrobial peptide. Brazilian goat milk was used as the source for the selection of bacteriocin-producing lactic acid bacteria. One strain (DF105Mi) stood out for its strong activity against several Listeria monocytogenes strains. Selected strain was identified based on the biochemical and physiological characteristics and 16s rRNA analysis. The bacteriocin production and inhibitory spectrum of strain DF105Mi were studied, together with the evaluation of the effect of temperature, pH, and chemicals on bacteriocin stability and production, activity, and adsorption to target cells as well as to the cell surface of bacteriocin producers. Physiological and bio-molecular analyses based on targeting of different genes, parts of nisin operon were performed in order to investigate the hypothesis that the studied strain can produce and express nisin. Based on biochemical, physiological, and 16s rRNA analysis, the strain DF105Mi was classified as Enterococcus hirae. The selected strain produces a bacteriocin which is stable in a wide range of pH (2.0-12.0), temperature (up to 120 °C), presence of selected chemicals and presents adsorption affinity to different test organisms, process influenced by environmental conditions. Higher bacteriocin production by Ent. hirae DF105Mi was recorded during stationary growth phase, but only when the strain was cultured at 37 °C. The strain's genetic analysis indicated presence of the genes coding for the production of the bacteriocin nisin. This result was confirmed by cross-checking the sensitivity of the produced strain to commercial nisin A. The strong anti-Listeria activity, bacteriocin adsorption, and stability of produced bacteriocin indicate that Ent. hirae DF105Mi presents a differentiated potential application for biopreservation of fermented dairy products.