Login / Signup

Stabilization of the Antioxidant Properties in Spray-Dried Microcapsules of Fish and Chia Oil Blends.

Muhammad Abdul RahimMuhammad ImranSaadia AmbreenFaima Atta KhanJoe Mac RegensteinFahad Al-AsmariSadaf OranabMuhammad NadeemImtiaz HussainMuhammad Zubair KhalidWaseem KhalidMoneera O AljobairIsam A Mohamed Ahmed
Published in: ACS omega (2023)
Even with healthy foods, there is still a need to protect the functionality during processing. The stabilization and enrichment of fish oil (FO) extracted from fish fillets using solvent extraction might make this healthy oil more available. FO was stabilized by mixing it with chia seed oil (CSO) at 50:50 at room temperature. The antioxidant properties of the blends were evaluated using the total phenolic content (TPC), free radical scavenging activity (DPPH), ferric reducing antioxidant potential (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities with FO and CSO as controls. The blends of FO and CSO increased the oxidative stability, while FO was the most susceptible to degradation. The stability and bioactivity of antioxidants against environmental factors were improved by using encapsulation. Response surface methodology (RSM) was used to optimize spray-drying operating conditions for spray-dried microcapsules (SDMs). The independent variables were the inlet air temperature (IAT), which varied from 125 to 185 °C; wall material (WM) concentration, which varied from 5 to 25%; pump speed (PS), which varied from 3 to 7 mL/min; and needle speed (NS), which varied from 3 to 11 s. The results indicated that the maximum antioxidant activity of SDM was obtained at 140 °C IAT, 10% WM, 4 mL/min PS, and 5 s NS, while the minimum value was obtained at 170 °C IAT, 20% WM, 6 mL/min PS, and 9 s NS. The IAT had a significant effect on the antioxidant activities, and the stability of SDMs was increased. These SDMs can be used in the formulation of food matrices due to their therapeutic and nutritional properties.
Keyphrases
  • room temperature
  • oxidative stress
  • anti inflammatory
  • ionic liquid
  • fatty acid
  • dengue virus
  • drug delivery
  • risk assessment
  • recombinant human