Login / Signup

Phenome-wide identification of therapeutic genetic targets, leveraging knowledge graphs, graph neural networks, and UK Biobank data.

Lawrence MiddletonIoannis MelasChirag VasavdaArwa Bin RaiesBenedek RozemberczkiRyan S DhindsaJustin S DhindsaBlake WeidoQuanli WangAndrew R HarperGavin EdwardsSlavé PetrovskiDimitrios Michael Vitsios
Published in: Science advances (2024)
The ongoing expansion of human genomic datasets propels therapeutic target identification; however, extracting gene-disease associations from gene annotations remains challenging. Here, we introduce Mantis-ML 2.0, a framework integrating AstraZeneca's Biological Insights Knowledge Graph and numerous tabular datasets, to assess gene-disease probabilities throughout the phenome. We use graph neural networks, capturing the graph's holistic structure, and train them on hundreds of balanced datasets via a robust semi-supervised learning framework to provide gene-disease probabilities across the human exome. Mantis-ML 2.0 incorporates natural language processing to automate disease-relevant feature selection for thousands of diseases. The enhanced models demonstrate a 6.9% average classification power boost, achieving a median receiver operating characteristic (ROC) area under curve (AUC) score of 0.90 across 5220 diseases from Human Phenotype Ontology, OpenTargets, and Genomics England. Notably, Mantis-ML 2.0 prioritizes associations from an independent UK Biobank phenome-wide association study (PheWAS), providing a stronger form of triaging and mitigating against underpowered PheWAS associations. Results are exposed through an interactive web resource.
Keyphrases