The objective of this study was to extract and purify proteins from the pulp tissues of litchi and evaluate their structure and pro-inflammatory activity. The results showed that a highly pure litchi protein was identified as the litchi thaumatin-like protein (LcTLP) by nano LC-MS/MS and verified by sequencing of the LcTLP gene. The molecular weight was 24 kDa, and the main secondary structure was a β sheet (33.00 ± 2.86%). Small-angle X-ray scattering results showed that LcTLP was a spherical particle (diameter of approximately 140 to 165 nm) with a close internal and rough surface in solution. The assay of pro-inflammatory activity in vitro revealed that the expression of inducible nitric oxide synthase and cyclooxygenase-2 genes reached 9.71 ± 0.64 and 7.05 ± 1.00 after 200 μg/mL LcTLP stimulation, which were 7.05-fold and 9.61-fold that of the blank control, respectively. LcTLP promoted the gene expression and production of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, and it also enhanced the expression of p65, which is a key component of nuclear factor-κ B signaling pathways. Additionally, the levels of anti-inflammatory cytokines interleukin-10 and transforming growth factor-β1 increased after LcTLP stimulation.
Keyphrases
- gene expression
- nitric oxide synthase
- transforming growth factor
- nuclear factor
- poor prognosis
- nitric oxide
- toll like receptor
- signaling pathway
- binding protein
- genome wide
- single cell
- dna methylation
- rheumatoid arthritis
- high throughput
- anti inflammatory
- cell proliferation
- computed tomography
- magnetic resonance
- copy number
- immune response
- heat shock protein
- transcription factor
- mass spectrometry
- small molecule
- endoplasmic reticulum stress
- pi k akt
- bioinformatics analysis
- solid state