The Triacylglycerol Profile of Oil Bodies and Oil Extracted from Argania spinosa Using the UPLC Along with the Electrospray Ionization Quadrupole-Time-of-Flight Mass Spectrometry (LC-Q-TOF-MS).
Farah ZaaboulChen CaoHusnain RazaZhao Zheng JunYong Jiang XuYuan Fa LiuPublished in: Journal of food science (2019)
The triacylglycerol (TAG) matrix of argan oil (AO) bodies (AOB) along with the TAGs of AO extracted from the same kernels using an organic solvent, were identified and quantified using the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Generally, both samples showed a similar TAGs profile but AO found to have three extra TAGs in low amount. In total 23 and 26 different TAGs were identified in AOBs and AO, respectively. The most abundant TAGs were OOL, POO, OOO, and POL in both samples. Furthermore, oleic acid, linoleic acid, and palmitic acid were the major fatty acids in both AOBs and AO. To the best of our knowledge, this is the first research that studied the TAGs matrix of an oil body revealing no major difference between the TAGs profile protected by the AOBs membrane and the oil extracted from the whole seed. PRACTICAL APPLICATION: Seed and kernels oil bodies emulsion tend to be the new source of emulsified oil in food and cosmetic industries. However, before replacing a product with another, we have to make sure that the new alternative can offer better or at least similar benefits. Our results showed that the triacylglycerols (TAGs) matrix and the argan oil (AO) share the same TAGs profile with a relatively close percentage. Therefore, AO bodies can be the perfect pre-emulsified oil for some food products like sauces and creams.