Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress.
Nadilly BonagasNina M S GustafssonMartin HenrikssonPetra MarttilaRobert GustafssonElisée WiitaSanjay BorhadeAlanna C GreenKarl S A VallinAntonio SarnoRichard SvenssonCamilla GöktürkTherese PhamAnn-Sofie JemthOlga LosevaVictoria CooksonNicole KiwelerLars SandbergAzita RastiJudith E UnterlassMartin HaraldssonYasmin AnderssonEmma R ScalettiChristoffer BengtssonCynthia B J PaulinKumar SanjivEldar AbdurakhmanovLinda PudelkoBen KunzMatthieu DesrosesPetar IlievKatarina FärnegårdhAndreas KrämerNeeraj GargMaurice MichelSara HäggbladMalin JarviusChristina KalderénAmanda Bögedahl JensenIngrid AlmlöfStella KarstenSi Min ZhangMaria HäggbladAnders ErikssonJianping LiuBjörn GlinghammarNatalia NekhotiaevaFredrik KlingegårdTobias KoolmeisterUlf MartensSabin Llona-MinguezRuth MoulsonHelena NordströmVendela ParrowLeif DahllundBirger SjöbergIrene L VargasDuy Duc VoJohan WannbergStefan KnappHans E KrokanPer I ArvidssonMartin ScobieJohannes MeiserPål StenmarkUlrika Warpman BerglundEvert J HomanThomas HelledayPublished in: Nature cancer (2022)
The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.
Keyphrases
- acute myeloid leukemia
- cell cycle arrest
- induced apoptosis
- papillary thyroid
- endoplasmic reticulum stress
- oxidative stress
- single molecule
- drug induced
- heat stress
- squamous cell
- gene expression
- high throughput
- emergency department
- diabetic rats
- acute lymphoblastic leukemia
- genome wide
- lymph node metastasis
- childhood cancer
- copy number
- nucleic acid
- circulating tumor cells