Login / Signup

Effect of long-term consumption of tea (Camellia sinensis L.) flower polysaccharides on maintaining intestinal health in BALB/c mice.

Dan ChenYu DingHong YeYi SunXiaoxiong Zeng
Published in: Journal of food science (2020)
Polysaccharides have various health-promoting functions. However, dietary polysaccharides cannot be digested by the human alimentary tract, thus the gut is the most important location where polysaccharides play their role. The effect of polysaccharides from tea (Camellia sinensis L.) flower (TFPS) on intestinal health was investigated in the present study. TFPS with the molecular weight of 1,316.29 kDa was prepared, and twenty 6-week-old BALB/c male mice were randomly allotted to a chow diet (normal control group, NC group) or with 200 mg/kg (body weight)/day of TFPS for 13 weeks (n = 10 each). Histomorphology observation of jejunum and colons showed that TFPS maintained the adequate gut barrier. qPCR analysis revealed that the expression of colonic tight junction proteins of claudin1 (1.29 ± 0.15 compared with 1.00 ± 0.13, P < 0.05) and claudin5 (2.91 ± 0.44 compared with 1.00 ± 0.27, P < 0.01) at mRNA level with a significant difference between TFPS supplement or not, while the expression of TLR4 and TNF-α mRNA was not changed statistically. 16S rDNA amplicons sequencing was applied to measure the compositions of gut microbiota from feces of mice. TFPS treatment exhibited similar relative abundances in Bacteroidetes and Firmicutes; however, it decreased the relative abundance of Akkermansia and increased that of Lactobacillus compared with the NC group. The contents of short-chain fatty acids after TFPS supplementation, both in cecal contents and feces, were significantly higher than those of the NC group. Besides, TFPS significantly increased IgA production. These results suggest that TFPS is beneficial to intestinal health and can improve intestinal adaptive immune tolerance. PRACTICAL APPLICATION: Dietary polysaccharides improve human intestinal health. Understanding the effect of TFPS, safe and healthy food components, on gut health increases the likelihood that TFPS will be developed as a functional food.
Keyphrases