Login / Signup

Effects of Lactobacillus helveticus Fermentation on the Ca2+ Release and Antioxidative Properties of Sheep Bone Hydrolysate.

Keguang HanJing CaoJinghui WangJing ChenKai YuanFengping PangShaopeng GuNairui Huo
Published in: Korean journal for food science of animal resources (2018)
Both the calcium and collagen in bone powder are hard to be absorbed by the body. Although enzymatic hydrolysis by protease increased the bio-availability of bone powder, it was a meaningful try to further increase Ca2+ release, oligopeptide formation and antioxidant activity of the sheep bone hydrolysate (SBH) by lactic acid bacteria (LAB) fermentation. Lactobacillus helveticus was selected as the starter for its highest protease-producing ability among 5 tested LAB strains. The content of liberated Ca2+ was measured as the responsive value in the response surface methodology (RSM) for optimizing the fermenting parameters. When SBH (adjusted to pH 6.1) supplemented with 1.0% glucose was inoculated 3.0% L. helveticus and incubated for 29.4 h at 36℃, Ca2+ content in the fermented SBH significantly increased (p<0.01), and so did the degree of hydrolysis and the obtaining rate of oligopeptide. The viable counts of L. helveticus reached to 1.1×1010 CFU/mL. Results of Pearson correlation analysis demonstrated that LAB viable counts, Ca2+ levels, obtaining rates of oligopeptide and the yield of polypeptide were positively correlated with each other (p<0.01). The abilities of SBH to scavenge the free radicals of DPPH, OH and ABTS were also markedly enhanced after fermentation. In conclusion, L. helveticus fermentation can further boost the release of free Ca2+ and oligopeptide, enhance the antioxidant ability of SBH. The L. helveticus fermented SBH can be developed as a novel functional dietary supplement product.
Keyphrases
  • lactic acid
  • bone mineral density
  • protein kinase
  • soft tissue
  • bone loss
  • oxidative stress
  • escherichia coli
  • bone regeneration
  • nitric oxide