Login / Signup

Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor.

Narek DarabedianWenzhi JiMengyang FanShan LinHyuk-Soo SeoEkaterina V VinogradovaTomer M YaronEvanna L MillsHaopeng XiaoKristine SenkaneEmily M HuntsmanJared L JohnsonJianwei CheLewis C CantleyBenjamin F CravattSirano Dhe-PaganonKimberly StegmaierTinghu ZhangNathanael S GrayEdward T Chouchani
Published in: Nature chemical biology (2023)
Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.
Keyphrases
  • induced apoptosis
  • acute myeloid leukemia
  • protein kinase
  • cell cycle arrest
  • oxidative stress
  • allogeneic hematopoietic stem cell transplantation
  • childhood cancer