Anti-Inflammatory Effects of Barley Sprout Fermented by Lactic Acid Bacteria in RAW264.7 Macrophages and Caco-2 Cells.
Sang-Hyun KimYoun Young ShimYoung Jun KimMartin J T ReaneyMi Ja ChungPublished in: Foods (Basel, Switzerland) (2024)
The anti-inflammatory effects of supernatants produced from sprouted barley inoculated with Lactiplantibacillus plantarum KCTC3104 (Lp), Leuconostoc mesenteroides KCTC3530 (Lm), Latilactobacillus curvatus KCTC3767 (Lc), or a mixture of these lactic acid bacteria were investigated using RAW264.7 macrophages. BLp and BLc, the lyophilized supernatants of fermented sprouted barley inoculated with Lp and Lc, respectively, effectively reduced the nitric oxide (NO) levels hypersecreted by lipopolysaccharide (LPS)-stimulated RAW264.7 and LPS-stimulated Caco-2 cells. BLp and BLc effectively reduced the NO levels in LPS-stimulated RAW264.7 macrophages, and these effects tended to be concentration-dependent. BLc and BLp also exhibited strong DPPH radical scavenging activity and immunostimulatory effects. BLp and BLc significantly suppressed the levels of NO and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW264.7 macrophages and LPS-stimulated Caco-2 cells, indicating their anti-inflammatory effects. These effects were greater than those of unfermented barley sprout (Bs). The functional components of Bs, BLp, and BLc were analyzed by HPLC, and it was found that lutonarin and saponarin were significantly increased in the fermented sprouted barley sample inoculated with Lp and Lc (BLp and BLc).