Login / Signup

Small-Angle Neutron Scattering Study of High Fat Fish Oil-In-Water Emulsion Stabilized with Sodium Caseinate and Phosphatidylcholine.

Betül YesiltasMika TorkkeliLászló AlmásyZoltán DudásPedro J García-MorenoAnn-Dorit M SørensenCharlotte JacobsenMatti Knaapila
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
We report on small-angle neutron scattering (SANS) investigations of separate phase domains in high fat (70%) oil-in-water emulsions emulsified with the combination of sodium caseinate (CAS) and phosphatidylcholine (PC). The emulsion as a whole was studied by contrast variation to identify scattering components dominated by individual emulsifiers. The emulsion was subsequently separated into the aqueous phase and the oil-rich droplet phase, which were characterized separately. Emulsions produced with 1.05% (w/w) CAS and PC fraction which varies between 1.75% (w/w) and 0.35% (w/w) provided droplets between 10 and 19 μm in surface weighted mean in 70% fish oil-in-water emulsions. At least two-third of the overall CAS is associated with the interface, while the rest remains with the aqueous phase. Six percent of PC formed a monolayer in the interface, while the rest of the PC remains in the droplet phase in the form of multilayers. When the separated components were resuspended, the resuspended emulsion showed similar characteristics compared to the original emulsion in terms of droplet size distribution and neutron scattering. Instead, CAS in the aqueous phase separated from the emulsion shows aggregation not present in the corresponding CAS-in-D2O system.
Keyphrases
  • crispr cas
  • genome editing
  • high throughput
  • single cell
  • fatty acid
  • high resolution
  • ionic liquid
  • magnetic resonance imaging
  • contrast enhanced
  • monte carlo
  • network analysis