Login / Signup

Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies.

Daniel ReichartEric Lars-Helge LindbergHenrike MaatzAntonio M A MirandaAnissa ViveirosNikolay ShvetsovAnna GaertnerEmily R NadelmannMichael LeeKazumasa KanemaruJorge Ruiz-OreraViktoria StrohmengerDaniel M DeLaughterGiannino PatoneHao ZhangAndrew WoehlerChristoph LippertYuri KimEleonora AdamiJoshua M GorhamSam N BarnettKemar J BrownRachel J BuchanRasheda A ChowdhuryChrystalla ConstantinouJames CranleyLeanne E FelkinHenrik FoxAhla GhauriJan F GummertMasatoshi KandaRuoyan LiLukas MachBarbara McDonoughSara SamariFarnoush ShahriaranClarence YappCaroline StanasiukPantazis I TheotokisFabian Joachim TheisAntoon van den BogaerdtHiroko WakimotoJames Simon WareCatherine L WorthPaul J R BartonYoung-Ae LeeSarah A TeichmannAndreas BrodehlMichela NosedaGavin Y OuditMatthias HeinigJonathan G SeidmanNorbert HübnerChristine E Seidman
Published in: Science (New York, N.Y.) (2022)
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Keyphrases