Genomes of multicellular algal sisters to land plants illuminate signaling network evolution.
Xuehuan FengJinfang ZhengIker IrisarriHuihui YuBo ZhengZahin AliSophie de VriesJean KellerJanine M R Fürst-JansenArmin DadrasJaccoline M S ZegersTim P RiesebergAmra Dhabalia AshokTatyana DarienkoMaaike J BierenbroodspotLydia GramzowRomy PetrollFabian B HaasNoe Fernandez PozoOrestis NousiasTang LiElisabeth FitzekW Scott GrayburnNina RittmeierCharlotte PermannFlorian RümplerJohn M ArchibaldGünter TheißenJeffrey P MowerMaike LorenzHenrik BuschmannKlaus von SchwartzenbergLori BostonRichard D HayesChristopher DaumKerrie W BarryIgor V GrigorievXiyin WangFay-Wei LiStefan Andreas RensingJulius Ben AriNoa KerenAssaf MosqunaAndreas HolzingerPierre-Marc DelauxChi ZhangJinling HuangMarek MutwilJan de VriesYanbin YinPublished in: Nature genetics (2024)
Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Keyphrases
- climate change
- genome wide
- human health
- copy number
- cell wall
- water quality
- genome wide identification
- escherichia coli
- poor prognosis
- public health
- life cycle
- risk assessment
- gene expression
- dna methylation
- big data
- deep learning
- binding protein
- long non coding rna
- genome wide analysis
- network analysis
- bioinformatics analysis