Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments.
Laurent GattoRuedi AebersoldJuergen CoxVadim DemichevJason DerksEdward EmmottAlexander M FranksAlexander R IvanovRyan T KellyLuke KhouryAndrew LeducMichael J MacCossPeter NemesDavid H PerlmanAleksandra A PetelskiChristopher M RoseErwin M SchoofJennifer E Van EykChristophe VanderaaJohn Yates IiiNikolai SlavovPublished in: Nature methods (2023)
Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .
Keyphrases
- single cell
- data analysis
- electronic health record
- tandem mass spectrometry
- induced apoptosis
- mass spectrometry
- rna seq
- clinical practice
- liquid chromatography
- cell cycle arrest
- big data
- high performance liquid chromatography
- high throughput
- gas chromatography
- ultra high performance liquid chromatography
- healthcare
- multiple sclerosis
- simultaneous determination
- quality improvement
- signaling pathway
- ms ms
- cell death
- solid phase extraction
- oxidative stress
- emergency department
- risk assessment
- machine learning