The Effect of Precipitation pH on Protein Recovery Yield and Emulsifying Properties in the Extraction of Protein from Cold-Pressed Rapeseed Press Cake.
Cecilia AhlströmJohan ThuvanderMarilyn RaynerMaria MatosGemma GutierrezKarolina ÖstbringPublished in: Molecules (Basel, Switzerland) (2022)
Rapeseed is the second most cultivated oilseed after soybean and is mainly used to produce vegetable oil. The by-product rapeseed press cake is rich in high-quality proteins, thus having the possibility of becoming a new plant protein food source. This study aimed to investigate how the precipitation pH affects the protein yield, protein content, and emulsifying properties when industrially cold-pressed rapeseed press cake is used as the starting material. Proteins were extracted under alkaline conditions (pH 10.5) with an extraction coefficient of 52 ± 2% followed by precipitation at various pH (3.0-6.5). The most preferred condition in terms of process efficiency was pH 4.0, which is reflected in the zeta potential results, where the proteins' net charge was 0 at pH 4.2. pH 4.0 also exhibited the highest protein recovery yield (33 ± 0%) and the highest protein concentration (64 ± 1%, dry basis). Proteins precipitated at pH 6.0-6.5 stabilized emulsions with the smallest initial droplet size, although emulsions stabilized by rapeseed protein precipitated at pH 5.0-6.0 showed the highest emulsion stability at 37 °C for 21 days, with a limited layer of free oil. Overall, emulsion stabilized by protein precipitated at pH 5.0 was the most stable formulation, with no layer of free oil after 21 days of incubation.