Synthesis of Novel Methyl 7-[(Hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates and Antitumor Activity Evaluation: Effects in Human Tumor Cells Growth, Cell Cycle Analysis, Apoptosis and Toxicity in Non-Tumor Cells.
Juliana M RodriguesRicardo C CalhelhaAntónio NogueiraIsabel Cristina Fernandes Rodrigues FerreiraLillian BarrosMaria João R P QueirozPublished in: Molecules (Basel, Switzerland) (2021)
Several novel methyl 7-[(hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates were synthesized by Pd-catalyzed C-N Buchwald-Hartwig cross-coupling of either methyl 7-aminothieno[3,2-b]pyrazine-6-carboxylate with (hetero)arylhalides or 7-bromothieno[2,3-b]pyrazine-6-carboxylate with (hetero)arylamines in good-to-excellent yields (50% quantitative yield), using different reaction conditions, namely ligands and solvents, due to the different electronic character of the substrates. The antitumoral potential of these compounds was evaluated in four human tumor cell lines: gastric adenocarcinoma (AGS), colorectal adenocarcinoma (CaCo-2), breast carcinoma (MCF7), and non-small-cell lung carcinoma (NCI-H460) using the SRB assay, and it was possible to establish some structure-activity relationships. Furthermore, they did not show relevant toxicity against a non-tumor cell line culture from the African green monkey kidney (Vero). The most promising compounds (GI50 ≤ 11 µM), showed some selectivity either against AGS or CaCo-2 cell lines without toxicity at their GI50 values. The effects of the methoxylated compounds 2b (2-OMeC6H4), 2f and 2g (3,4- or 3,5-diOMeC6H3, respectively) on the cell cycle profile and induction of apoptosis were further studied in the AGS cell line. Nevertheless, even for the most active (GI50 = 7.8 µM) and selective compound (2g) against this cell line, it was observed that a huge number of dead cells gave rise to an atypical distribution on the cell cycle profile and that these cells were not apoptotic, which points to a different mechanism of action for the AGS cell growth inhibition.
Keyphrases
- cell cycle
- cell cycle arrest
- cell death
- oxidative stress
- induced apoptosis
- cell proliferation
- endoplasmic reticulum stress
- endothelial cells
- pi k akt
- squamous cell carcinoma
- induced pluripotent stem cells
- pluripotent stem cells
- locally advanced
- signaling pathway
- risk assessment
- radiation therapy
- high throughput
- cell therapy
- ionic liquid
- stem cells
- climate change
- human health
- rectal cancer
- anti inflammatory
- mesenchymal stem cells