Login / Signup

Lipidomics Approach in High-Fat-Diet-Induced Atherosclerosis Dyslipidemia Hamsters: Alleviation Using Ether-Phospholipids in Sea Urchin.

Xincen WangQinsheng ChenXiaoxu WangPeixu CongJie XuChang-Hu Xue
Published in: Journal of agricultural and food chemistry (2021)
Ether-phospholipids (ether-PLs) in sea urchins, especially eicosapentaenoic-acid-enriched plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O), exhibit potential lipid-regulating effects. However, their underlying regulatory mechanisms have not yet been elucidated. Herein, we integrated an untargeted lipidomics strategy and biochemical analysis to investigate these mechanisms in high-fat-induced atherosclerotic hamsters. Dietary supplementation with PE-P and PC-O decreased total cholesterol and low-density lipoprotein cholesterol concentrations in serum. The lipid regulatory effects of PE-P were superior to those of PC-O. Additionally, 20 lipid molecular species, including phosphatidylethanolamine, cholesteryl ester, triacylglycerol, and phosphatidylinositol, were identified as potential lipid biomarkers in the serum of hamsters with PC-O and PE-P treatment (95% confidence interval; p < 0.05). The variations of lipids may be attributed to downregulation of adipogenesis genes and upregulation of lipid β-oxidation genes and bile acid biosynthesis genes. The improved lipid homeostasis by ether-PLs in sea urchins might be a key pathway underlying the antiatherosclerosis effect.
Keyphrases