Capsaicin Rich Low-Fat Salad Dressing: Improvement of Rheological and Sensory Properties and Emulsion and Oxidative Stability.
Esra AvcıZeynep Hazal Tekin-ÇakmakMuhammed OzgoletSalih KarasuMuhammed Zahid KasapogluMohamed Fawzy RamadanOsman SagdicPublished in: Foods (Basel, Switzerland) (2023)
This study aimed to investigate the potential use of cold-pressed hot pepper seed oil by-product (HPOB) in a low-fat salad dressing to improve its rheological properties, emulsion, and oxidative stability. The total phenolic content (TPC), the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and CUPRIC reducing antioxidant capacity (CUPRAC) values were 317.4 mg GAE/100 g, 81.87%, and 6952.8 mg Trolox/100 g, respectively. The capsaicin, dihydrocapsaicin, and total carotenoid content were 175.8 mg/100 g, 71.01 mg/100 g, and 106.3 µg/g, respectively. All emulsions indicated shear-thinning, viscoelastic solid-like behavior, and recoverable characteristics, which were improved via enrichment with HPOB. The thermal loop test showed that the low-fat sample formulated with 3% HPOB indicated little change in the G* value, showing that it exhibited high emulsion stability. The induction period values (IP) of the salad dressing samples containing HPOB (between 6.33 h and 8.33 h) were higher than the IP values of the control samples (3.20 h and 2.58 h). The enrichment with HPOB retarded the formation of oxidative volatile compounds of hexanal, nonanal, and 1-octene-3-ol. According to the results presented in this study, HPOB could be effectively used in a low-fat salad dressing to enhance its rheological characteristics and oxidative stability.