Login / Signup

Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3.

Jark BöttcherDavid DilworthUlrich ReiserRalph A NeumüllerMichael SchleicherMark PetronczkiMarkus ZeebNikolai MischerikowAbdellah Allali-HassaniMagdalena M SzewczykFengling LiSteven KennedyMasoud VedadiDalia Barsyte-LovejoyPeter J BrownKilian V M HuberCatherine M RogersCarrow I WellsOleg FedorovKlaus RumpelAndreas ZoephelMoriz MayerTobias WunbergDietrich BöseStephan ZahnHeribert ArnhofHelmut BergerChristoph ReiserAlexandra HörmannTeresa KrammerMaja CorcokovicBernadette SharpsSandra WinklerDaniela HäringXiao-Ling CockcroftJulian E FuchsBarbara MüllauerAlexander Weiss-PuxbaumThomas GerstbergerGuido BoehmeltChristopher R VakocCheryl H ArrowsmithMark PearsonDarryl B McConnell
Published in: Nature chemical biology (2019)
Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.
Keyphrases